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Abstract. The methods of Lie group analysis of differential equations are generalized so as to
provide an infinitesimal formalism for calculating symmetries of difference equations. Several
examples are analysed, one of them being a nonlinear difference equation. For the linear
equations the symmetry algebra of the discrete equation is found to be isomorphic to that of its
continuous limit.

Résung. Les méthodes de la #orie de groupes utilges pour traiter lesquations diférentielles
sont geréralies au cas demquations aux diéfrences finies. Plusieurs examples sont agalys
parmi ceux-ci celui d’'unetquation non lidaire. Dans tous les cas &aires il s'aere que
I'algebre de syrétrie de Iequation discte est isomorpha celle de sa limite continue.

1. Introduction

The purpose of this paper is to develop an algebraic formalism for calculating symmetries
of difference equations. The equations to be studied will involve functigng where the
dependent variables € R” and independent onase R? are considered to be continuous.
The equations themselves will be discrete, i.e. written on a uniform lattice with spacings
o; > 0 (in the directionx;). Thus, instead of involving partial derivatives ofx), the
equations will contain finite differences (variations) of the form

1
Agu = —{u(x1, ..., X1, X + 0, Xig1, ..., Xg) — U(X1, ..., Xi—1, Xi, Xit1, ..., %)} (1.1)
i

and also shift operators,,
Tou=u(xy, ..., Xi—1, Xi +0j, Xi41, ..., Xg) (1.2)
The spacings, variations and shift operators are related:
1
Ay, =—(T, - 1). (1.3)
o
The symmetries that we will introduce will constitute a ‘minimal’ extension of Lie
point symmetries of differential equations. For difference equations we will consider
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transformations that take solutions into solutions. They are not strictly point transformations,
in that the transformed functiofd(x) depends not only on the old and x, but also on
shifted valuesT,,u(x). In the continuous limit witho; — 0, 7\, — 1, A,, — 9,,, the
transformations will reduce to point ones.

Our aim is to provide group-theoretical tools that are equally efficient for solving
difference equations, as their continuous limits are in the case of differential equations [1-5].
We recall here that once the symmetry group of a differential equation is found, it can be used
for many purposes. It will transform given solutions into new ones, often trivial solutions
into interesting ones. The symmetry group can be used to perform symmetry reduction, i.e.
reduce the order of an ordinary differential equation, or the number of independent variables
in a partial differential equation. Isomorphies between symmetry groups of differential
equations can be used to identify equivalent equations, in particular to determine whether a
nonlinear equation is linearizable by a point transformation [2]. Symmetry groups can also
serve as indicators of integrability [6—8] by Lax pair techniques.

The motivation for such a programme comes from the fact that difference equations are
becoming increasingly important in physical and other applications. They occur naturally
whenever discrete phenomena are studied. Obvious examples are spin lattices in statistical
mechanics, phenomena in crystals, molecular chains [9], etc. Difference equations and their
g-analogues play a crucial role in the representation theory of quantum groups and hence
in special function theory [10-13]. Difference equations also occur in studies of essentially
continuous phenomena, when differential equations are approximated by discrete ones, for
instance in numerical studies.

Several different approaches to symmetries of discrete equations exist in the literature.

In the first of them [14-18] one starts out from a given difference, or differential
difference equation for a function € R?”, depending on a set of continuous variables
x € R? and discrete variablesn = (ny,...,n,). The equation involves derivatives in
the continuous independent variablesnd shifts in the discrete variables Thus, in the
equation, we have entries like(x, n + k), u,, (x, n + k;), etc, with (the discrete vectorg)
andk; in some finite range. The method provides symmetry transformations, generated by
vector fields of the form

X =Y &, wd, + Y paln, x, u)dy, (1.4)

whereu = u(x, n). The method for finding the vector fields, i.e. the coefficientg; and
¢, involves the construction of the prolongatior’pr of X (N is the order of the highest
derivative in the equation). The prolongation acts on functions,of and the derivatives
of u, evaluated at all the points + & where the functions:(n, x) and their derivatives
are given [15, 16]. The determining equations for the coefficiénend ¢, are obtained
by requiring that the prolongation hbeX should annihilate the equation on its solution set.
The algorithm thus coincides with the one used for differential equations [1-5], the only
difference being in the way in which the vector field is prolonged. Once the continuous
symmetries are found, the discrete ones are obtained separately, essentially by inspection
(e.g. discrete translations, or rotations, acting on the variab)les

The described method is quite general, equally applicable to linear and nonlinear
equations. The disadvantage is that when passing from continuous to discrete equations
in this manner, some of the symmetries are lost. Indeed, since the discrete varialées
required to have integer values, it is difficult to envisage, for example, dilations of such
variables.
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A second method was introduced recently for finding symmetries of linear difference
equations [19, 20]. All variables in the problem are assumed to be continuous, with their
increments discrete, as in (1.1)—(1.3). The equations are written in the form

Lu(x)=0 ueRP xeR? (1.5)

whereL is a polynomial in the finite differences,, with coefficients that can be functions
of x and7,,. The symmetry operators in this approach have the form

q
X =Y &, T)A, + f(x, T) (1.6)
i=1

i.e. they are themselves finite difference operators.
The symmetry operators are required to commute with the opefator the solution
set of (1.5)

[L,X]=AL (1.7)

wherel can be a constant, a function of or a lower-order difference operator. Equations

of the type (1.7) for difference operators are actually hard to solve. The approach actually
adopted in [19, 20] is to find operatoszuch thatw = Xu is a solution of (1.5), whenever

u is one. This requires knowing a complete set of solutions and implies that these operators
satisfy equations of the form (1.7). Upon investigating the commutation relations of the
symmetry generators, it was found, in all the examples studied, that they realize a Lie
algebra isomorphic to the one obtained in the continuous limit. These symmetries were
further used to obtain solutions involving discrete analogues of special functions.

In spirit, this method is a straightforward adaptation of symmetry methods used by
physicists to study symmetries and degeneracy problems in quantum mechanics. Below we
shall call it ‘the method of linear operators’. The big advantage of this method is that in
all the cases studied to date it provides symmetry algebras for discrete equations that are
isomorphic to those of their continuous limits.

Their concrete realizations are of course different. The disadvantage of the method is
that it is only applicable to linear equations. Moreover, as we shall see below, even for
linear equations the method of linear operators may not give all symmetries (either in the
continuous, or in the discrete case).

A third approach to symmetries of discrete equations is due to Dorodnitsyn and
collaborators [21, 22]. In this case the aim is to discretize a differential equation in
such a manner as to preserve all Lie point symmetries of the continuous equation. The
symmetry operators in this approach remain in their original (continuous) form. The lattice
is introduced in a very specific way, so as to be compatible with the original symmetries.
The group transformations then act not only on the independent and dependent variables, but
also on the lattice. For other results on symmetries of discrete equations, see e.g. [23, 24].

The purpose of this paper, already stated at the beginning of this introduction, can be
reformulated as follows. We wish to combine the advantages of the first two approaches
described above. That is, to develop a prolongation formalism for ‘discrete vector fields’,
applicable to linear and nonlinear equations, providing Lie symmetries in an algorithmic
manner. Moreover, in the continuous limit we should recover all Lie point symmetries of
the corresponding differential equations.

Section 2 of this paper is devoted to a general formalism for obtaining symmetries
of difference equations. We first recapitulate some results concerning the formalism of
evolutionary vector fields for differential equations. The general prolongation formalism
for difference equations is developed in section 2.2. Section 3 is devoted to examples. We
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treat the discrete heat equation with a general ‘potential’ and then specify the potential to
specific cases with interesting symmetry algebras. We also obtain the generators of both
linear and nonlinear symmetry transformations for the linear equatign(x) = 0. A
nonlinear difference equation is analysed in section 3.4. Some conclusions are presented in
section 4.

2. Prolongation formalism for difference equations

2.1. Evolutionary vector fields for differential equations

Let us first consider a differential equation
E(x,uy,tyy,...)=0 (2.1)

where E is some sufficiently smooth scalar function of the independent variable®?,
the dependent variable(for simplicity of notation a scalar) and its derivatives,, . - .-,
up to ordern.

The Lie algebral of the symmetry groups of local point transformations can be
realized in terms of vector fields of the form

q
X =) &, u)dy, +¢(x, u)d, . (2.2)
i=1

The Nth prolongation ofX must annihilate the equation on its solution set:
pr¥ X E|g—o=0. (2.3)

The prolongation is constructed in a standard manner [1-5], that has been implemented in
computer programs in many symbolic languages (see e.g. [25]).

Equation (2.3) provides a set of linear partial differential equations for the functions
&(x,u) and ¢ (x,u). Once they are solved, we have the symmetry algehravith X
either depending on a finite numbeof integration constants, or on one or more arbitrary
functions. In the first case we have dim= r, in the second the algebra is infinite
dimensional.

Alternatively [1], we can use the formalism of evolutionary vector fields

X. = Qa, 0 =&, wuy, —P(x,u) (2.4)

where & and ¢ have the same meaning as in (2.2). The prolongation formulae in the
evolutionary formalism are quite simple, namely

prN X€ = Qau + QXi a”x,' + ijxj 8”1,’.‘] T
Q% =D, Q Q" =D, Dx,- o,...,

where D, is the total derivative with respect 19.

The evolutionary formalism is the one that we shall adapt to difference equations, so
let us present some further results for it.

The determining equations for the symmetry oper&gyi.e. for the functions; and
¢ are obtained by requiring that we have

(2.5)

prX.Elg—0=0. (2.6)
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The commutation relations in the Lie algebra are obtained by commuting the first
prolongations of the corresponding vector fields and then projecting the results onto the
algebral:

[Xlev XZE] = [pr(l) Xlev pr(l) X2€]|L

) 5 L0 9
= {Qlaqu— Q2£Q1+Q1

duy, Q20 duy,
(the 3, terms are cut off by the projection onto the algelja

The symmetry transformations are obtained from the evolutionary fields by integrating
them, together with the original equation. Thus a one-parameter group of symmetry
transformations is obtained by solving the system

qu @.7)

ou(x, A -~ ~
(ax ) O(x, u(x), iy, (x)) U(x, M=o = u(x) (2.8)
(possibly together with (2.1)). The result of the integration can be represented formally as
eXu(x) =u(x, ) = u(x) + 2Q(x, @(x), iy, (x)) + OL?). (2.9)

The formalism of commuting linear operators is related to the Lie prolongation
formalism in a simple manner. Indeed, let us restrict (2.1) to be linear and write it in
the form (1.5), wherel is a linear differential operator. The local group transformation
corresponding to the Lie algebra element (2.2) is given by

7X@ = (e u)(x) ¥=e¥x. (2.10)
Let us now further restrict the coefficientsand¢ in (2.2) to have the form
& =6&(x) ¢=—f(x)u (2.11)

and expandi(x) andX in (2.10) into power series, keeping only the terms propositional to
1 andx. We find thatLu = 0 implies

X = &)y, + f(x). (2.12)

Conversely, if we require that the operatﬁr of (2.12) should satisfy the commutation

relation (1.7), withL the corresponding linear differential operator and function ofx, or

a differential operator, thelWu, X u (p € Z?) and %y are all solutions, ifu(x) is one.
Thus, for linear equations, instead of using the Lie formalism, we can simply look for

operatorsf of the form (2.12), satisfying the commutation relation (1.7). The operator

X, = (Xu)d, (2.13)

will then be a Lie symmetry operator in evolutionary form.

It should, however, be stressed that this linear formalism may only provide a subalgebra
of the Lie symmetry algebra, since the restriction (2.11), §eindependent ofu, ¢
proportional tou, may result in a loss of some symmetries (see the second example in
section 3 below).

2.2. Evolutionary formalism for difference equations

Let us write a general difference equation, involving one scalar function of p
independent variables = (x1, ...x,) evaluated at a finite number of points on a lattice.
Symbolically we write it as

E(x, T*u(x), TP Aqu(x), T" Ay Ay u(x),...) =0 (2.14)
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where E is some given function of its arguments and we have put, for example,
Tu(x) = T2 T2 ... Txi”u(x) a; <o; < b; i=1,...,p (2.15)

whereq; are integers running through some fixed finite range {i.@ndb; are some fixed
integers). The shift operatorg?, Tv,... are defined similarly and the corresponding
integersp; ~ (Bi1, ..., Bip)s ¥ij ~ Wij1, - -+ Vijp), - - -, @S0 vary over some finite range.

The functionE may also depend explicitly on the spacingshoweverg;, T, andA,,
are not independent, since we have (1.3). Thus, to avoid redundances in the equations and
in the vector fields, we shall not allow expressions of the typa,, with a € Z~. They
can always be eliminated using (1.3). Negative powers; @re also disallowed. They can
either be absorbed in the variations, u, or they can have a singular continuous limit.

Let us now consider a ‘discrete vector field’ in evolutionary form. We shall postulate
that it can be written as

Xe=0Q8, Q=) &H0.TWT Ayu—¢x, Tu) (2.16)

where T¢, T? and T¢ have the same meaning as in (2.14). Notice that in (2.16) the
variationsA,,u enter linearly, whereas the dependenceuofshifted, or not) is arbitrary.
In the continuous limit (2.16) reduces to (2.4).

The essential task is to present the consistent prolongation of the vector field (2.16).
The group transformations, generated Xy will take functionsu = u(x) into transformed
functionsu = u(x). The group transformations generated by the prolongatinXprmust
also transform the variation&, u, A, A, u (up to orderN) into the variations of¢ with
respect tax;, and to do this at all points of the lattice.

This also means that PrX, will act on functions ofx, u and the variations at different
points of the lattice, i.e. functions of the form of the considered equation (2.14).

The prolongation formula satisfying the above requirements has the form

prV X, = {Z T Qd7ay, + Z T Q% 3.4, g+ Z TYi Q% 9 Ay dyu +.. } (2.17)
o Bi Vij ’
The shift operatorsr®, ..., were defined in (2.15), the summations are over all values

(all sites) represented in (2.14). The coefficieks, Q% , ... are total variations of the
coefficientQ in the discrete evolutionary field (2.16). We have

0% =Al0 Q% = Al AXTJ 0 (2.18)

and similarly for higher-order prolongations.
The total variationA” acts on functions of, u, A,u, ... according to the following
definition:

1
AZf(x, u(x), Ayu(x),...) = ;[f(x +o,u(x+o0), (Au)(x+0),...)

—f(xux), (Ayu)(x),...)] (2.19)
(for eachx = x;). The action of the ‘partial’ variatiom\,, on the other hand, is

Ay f(x,u(x), Ayu(x),...)
1
= g[f((x + o), ulx), Au(x),...)— fx,ulx), Acu(x),...)] (2.20)

for each independent variahile.
The main difference between the prolongation formula (2.17), and the corresponding
one in the continuous case, i.e. equation (2.5), is precisely the summation over different
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sites on the lattice. In the continuous linit — 0 we haveT — 1 for all shift operators
and each summation contracts to a single term.

Once constructed, the discrete vector fields in their evolutionary form (2.16) and
their prolongation (2.17) can be treated in the same manner as in the continuous case.
Commutators are calculated as in (2.7), i.e. by commuting the first prolongations and
projecting ontoL. Symmetry transformations are obtained by solving equation (2.8).
This may, however, be difficult, since (2.8) is a first-order differential difference equation
involving differentiation inA, but discrete derivatives (variations) in thevariablesx;.

In the continuous case it is a first-order linear PDE that can be solved by the method of
characteristics.

Luckily, in most applications one deals with the Lie algebra, rather than the Lie group.
The explicit group transformations are rarely needed.

The relation between the prolongation formalism, and the linear operator one, is the
same as in the continuous case. Indeed, consider the special case when equation (2.14) is
linear. The operatoX of (1.6), satisfying (1.7), can be obtained by restrictidgo satisfy

0 =[E@TF (Agu) + f(x, Tou] = Xu. (2.21)

The algorithm for calculating the symmetry algebra is given by equation (2.6), i.e. it
is the same as in the continuous case. The determining equations for the fugctaoms
¢ are read off as coefficients of linearly independent expressions in the (possibly shifted)
discrete derivative$T*A,.u), (TP A, u),....

It should be pointed out, however, that technical difficulties occur, that make the general
formalism more difficult to use, than in the continuous case.

The main problem is inherent in the total variation$ f, defined in (2.19). Indeed,
total derivatives are expressed in a simple manner in terms of partial derivatives, e.g.

_o L, L

D, f(x,u,uy,...)= ax"’@ux‘l'aiuxuxx""‘"

As yet, no such formula is available for total variations. To deal with them we can either
make use of a Taylor expansion of the function on the right-hand side of (2.19), or introduce
a mechanism for expressing the total variations in terms of partial ones. The first possibility
introduces derivatives of all orders, the second one will introduce further difference equations
that are not easy to solve. An additional obvious problem is the presenqeriofi arbitrary
functions of the shift operatorg,,.

These technical difficulties really only arise for nonlinear equations.

3. Examples

Let us now apply the formalism of section 2 to some specific equations, three linear and
one nonlinear one.

3.1. Discrete heat equation

The equation that we consider is
[AI_AXX—‘f—g(xvtv Txv E)]M(X,I)ZO (31)

whereg is some given function af, ¢ and the two shift operatorg, andT,.
In agreement with section 2, equation (2.16), we write the evolutionary vector field in
the form

X, = [TAru +EAu+ fu]au = Q0, (32)
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wheret, & and f are functions of, ¢, 7, and7,. They can also depend explicitly on the
and: spacingsg, ando, (to some non-negative powers). We apply the second prolongation
pr? X, to (3.1) and require that the result should vanish on the solution set:

Ql - Qxx + gQ|A”u:A,u+gu =0. (33)

The coefficientsQ’ = AT'Q and 0** = AT _Q depend explicitly oru and the variations
of u, up to third order. We use (3.1) and its difference consequences to eliminaie
Axu and A, u. All A,u terms cancel and we are left, in equation (3.3), with the
expressionsA,,u, Au, Ayu andu, all figuring linearly only. The coefficient of each of
these expressions must vanish and we obtain four determining equatianscicand f in

(3.2). They are:

At =0 (3.4)
—(AT)T, + 2(A8)T, +[1, 8] =0 (3.5)
—(AOT, + (AT + 20 T, +[€,8]1 =0 (3.6)
—(APT A+ (A T+ 206 Tg + EA T+ T(AQT +[f, 8] = 0. 3.7)

We shall not analyse the symmetries of (3.1) for all possible functignghough in
principle that would be possible (though not easy even in the continuous case). Instead, we
consider some special cases.

3.1.1. The ‘free’ heat equatiorg(x, ¢, Ty, T,) = 0. The determining equations (3.4)—(3.7)
are easily solved to yield

t=1Pn 41+ 10 (3.8)
§ = 3x(n+2T)TT + 11+ &o (3.9)
f= P02 4 LT, + e TT 4y (310)

wheretg, 1, T2, &0, £ and y are arbitrary functions of the shift operatdfs and 7, and
also of the spacings, ando;.

In equations (3.8) and (3.10) we have introduced factorial functions, or Pochhammer
symbolsx™ (or ™) satisfying

Apx™ = px®D ner”
(n) _
x" =x(x—o0y)...(x — (n — Doy)
3.11
L0 _1 (311)
AxC" = —pxnD newz”
x = 1 (3.12)

T x(x40y)...(x+ (= Doy)

(and similarly forz™).

At first glance, each of the functiong, &, and y yields an infinite-dimensional
subalgebra of the symmetry algebra. We can, however, pick out a six-dimensional algebra,
isomorphic to the symmetry algebra of the continuous heat equation. Indeed, let us construct
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a basis, corresponding to six different choices of the coefficients in (3.8)—(3.10), respectively
(in each case all unspecified coefficients are chosen to vanish):

0= 1: Py = (Au)d,

fo=1: Py = (Axu)dy

y =1 W = ud,

g =21t y =30.T; "

B = (2tT,_leu + xTX_lu + %GxTx_lu)Bu (3.13)

L= ZTI’1 y=1-— %Tx’l
D =[2tT " Au+ xT P Au + (L= 3T, Huld,

-2 —1p-1 1 _2p-2
=T, E&1=0,T, T, )/:—1—60)(T)C

K = [T, 2 A + txT,7 T A+ 3x° T 2u + (T2 — 3T, T Yu — 2027728, .

The shift operators7, and T;, themselves represent discrete symmetries of (3.1), i.e.
T!'T"u is a solution, ifu is one. Hence the general element (3.2) of the symmetry algebra,
with 7, & and f as in (3.8)—(3.10) can be viewed as a linear combination of elements of
the algebra (3.13), with coefficients that are polynomial§,irand7;.

The symmetry algorithm thus provides not only the symmetry algebra itself, but also
elements that properly belong to an analogy of the enveloping algebra in the continuous
case.

3.1.2. Nonzero potentiad(x, ¢, T, T;) # 0. For the sake of simplicity, let us first of all
restrict the potential to the form

We also make some restrictions on the dependence of the symmetry generators on the
shift operators. First of all, we impose = (¢, T;) (no 7, dependence). We then solve
(3.4)—(3.6) to obtain

T=1(,T) (3.15)
§=x(ADTLT  +al, Th) (3.16)
=3P AT+ Jx (AT — A (A DT gl T+ B Th)
(3.17)
The fact thatx and g in (3.15)—(3.17) do not depend d@n is again a restriction on the
symmetries considered.
The remaining determining equation (3.7) relates the func§@nsT,), (¢, T;), a(t, T;)

andg(t, T,). It simplifies greatly if the commutatorf[ g] vanishes.
Two cases of interest when this happens are

g=cxPT 7P per” (3.18)

g=cTx"PTrt pezZ. (3.19)
For both these potentials we have

[xT,/hgl=0  [x?T;2¢g]=0. (3.20)

Hencef of equation (3.17) simplifies to
[= g POuO T2 + ax (A LT + B, T)) (3.21)
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Moreover, equation (3.7) can now be rewritten as

—5xP (A OTT? = 3x (M) TPT, = (AT + 3(AuT) T + (A ) Tig
+3x(ADTLT AT + (AT, = 0. (3.22)

Equation (3.22) holds for any potentjakatisfying [f, ¢g] = O, in particular, for the potentials
(3.18) and (3.19).

We shall now restricig(x, T,) even further, namely to two cases that have interesting
symmetry algebras in the continuous case when we bave 0,0, — 0,7, —> 1,7, — 1.
The continuous heat equation has a six-dimensional symmetry algebra, isomorphic to that
of the free equation fog = cx?. It has a four-dimensional symmetry algebra that is a
subalgebra of that of the free equation, foe= ax~2 (see [26, 27] for similar results for

the Schodinger equation).
Let us consider the discrete analogues of these two cases.

3.1.3. (i) Discrete harmonic oscillator.
g(x, Ty) = k*x P12 k e R>. (3.23)

In this case equation (3.22) has terms proportional?y x andx®. Their coefficients must
vanish separately, sinag « and 8 do not depend om. The corresponding equations are

(At) = 1683(A, )T, 2
Ay = 4Pl 2 (3.24)
AB = 5(ADT, .
To solve these equations, we introduce a ‘shifted discrete expone#fjél) satisfying
AE,(t) =mE, ()T . (3.25)
The solution of (3.25) can be written as
En(t) = 14 mT, o)/ . (3.26)
In terms of this function we have the general solution of (3.24) as
T=Eq(t)t1+ E_4(t)T2+ 0
o=Exy{t)ar+ E_x{)oz (3.27)
B=k(Ex()t1 — E_4(1)T2) + 7

wherer, 12, 1o, @1, a2 andy are functions off, (and the spacings,, o).
The corresponding evolutionary vector fields are

Py = 19A;uo, L =yuod,
T1 = Eq()ta[Aju + 2kx T Au + 2k%x P T 2u + ku)d,
T, = E_g4(t)12[Aju — kaTxfleu + 2k2x(2>Tx72u — ku)o, (3.28)

Ay = Ex(O)ay(Au + kxT u)d,
Az = E_g()aa(Au — kxT 1u)d, .

As in the case ok = 0 it is possible to fix the functions;, «; andy and choose a basis,
SO as to obtain a six-dimensional Lie algebra isomorphic to that of the free heat equation
(the discrete and the continuous one). We shall not go into that here.
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3.1.4. (i) Discrete ‘centrifugal barrier’.
gx. T,) = Tx"2T, . (3.29)

Equation (3.22) now contains terms of the font?, x, x° and x~2. We obtain four
determining equations. Solving them we find & and f in the general element of the
symmetry algebra to be

T=7T0+1171+ t(z)rz
£=1x(m+ 2T, " (3.30)
f=xPnT?T 2+ 30T + y

wherer; andy are functions off;, o, ando,.

By fixing 7; and y appropriately, we can select a four-dimensional symmetry algebra
from the vector fields with coefficients (3.30).

We mention that a different approach could have been adopted in this case. Indeed
we could have required that a four-dimensional subalgebra of the ‘free’ symmetry algebra
(3.13) should survive, as it does in the continuous case fer x=2. This would be the
algebra{Py, D, K, W}. This algebra could then be inserted into equation (3.22) and that
equation solved for the potentiglx, T,). The result forg(x, T,) would then be (3.29).

3.2. The second-order difference equatidp.u = 0

The ordinary differential equation,, = 0 is invariant under the Lie grou§L(3, R),
acting as the group of projective transformations of theu)-plane. The six-dimensional
subgroup of affine transformations acts linearly and globally. The remaining two one-
parameter subgroups act locally and nonlinearly in bo#nd«. The symmetry group in
itself is of no particular use (since we know the general solutiog ax + b anyway).
However, Lie point symmetries survive under point transformations. Hence, any ordinary
differential equation, linearizable by a point transformation, will have/dB, R) symmetry
algebra. This is a very useful criterion of linearizability.

We expect the same to be true for the difference equation

A =0. (3.31)

The linear formalism and the corresponding ansatz (2.21) are clearly insufficient in this
case. We start from the more general ansatz of (2.16), namely that the discrete evolutionary
vector field has the form

X, =[G, T TP Au + ¢ (x, TCu)]d, = Q8 . (3.32)
The determining equations are obtained by requiring that we have
AL Qla.u=0=0. (3.33)

We expandt and¢ in Laurent series im and rewrite equation (3.33) as

+00
D AALE (x, TOT2[u Agu] + 24, (x, TOT (A T A ]

j==o0
+& (¢, TOL( A u)T?Acu] + Ay (x, T)TPu?
+2A,¢; (x, TO T (Ayu?) + ¢ (x, T (Arxtt! ) um0 = 0 (3.34)
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whereg;, ¢; are functions ofc and operators if,. For A, u = 0 we have

J
Agd = Ayt N Tu T i>1
k=1
A/ =0 j=0 (3.35)

—J

k=1
and
J (k-1 j—k
Agu! = (Axu)ZZ{Zu’1(Tu"’1(T2uf") + uklz(Tull)(Tzufkl)}
k=1%'1=1 =1
j>1

. (3.36)
Agu! =0  j=0,1

—j (—jt+1-k k
Axxujz(Axu)ZZ{ > ul+j+k_2(Tu_l)+uk+j_lZ(Tul_k_l)(Tzu_l)} j<o.
k=1

k=1 =1

To derive (3.34)—(3.36) we have taken into account that¥oru = 0, we havelA,u =
A,u for anyn. Using equations (3.35) and (3.36), we can rewrite (3.34) as a Laurent series
in u(x) and A, u, with coefficients depending on the operatgraind¢;, and their first and
secondx-variations. By equating to zero all coefficients of different powers afnd A u
we get the following determining equations:

&(x, T,) =0 Vi<0 and j >2

¢;j(x,T,) =0 j<0 and j >3

A =0 j=0,12

Axxé:O + 2Ax¢1 =0

A1 T? + 20, ¢oT (T +1) = 0

Axél + 2¢2 =0.
Solving equation (3.37), we find that the symmetry algebra is characterized by four constants
and four functions of’, ando, and is given by eight vector fields which in the evolutionary
formalism are given by

Xle = Axuau

X = xAxuau

X3e = ¢10(T)(7 ax)uau

Xae = [x¢p11(0x, Tou — xP¢11(or, To) Au]d,

X5, = 8u

Xee = x0,

X7, = §10(Ty, o )uAud,

Xg. = {¢20(0x, Tx)uz — x¢o0(0y, T )uA,u}o, .

In order to obtain thel (3, R) algebra, we choose the remaining functiongpand 7,
to be

(3.37)

(3.38)

¢10 = 1 ¢11 = Tx_l glo = l ¢20 = l . (339)
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Thus, as in the case of the discrete heat equation, we obtain a symmetry algebra, isomorphic
to the one that exists in the continuous limit.
Had we made the ‘linear’ ansatz

Xe=(E@) A+ f(X)u)d, = Q0 (3.40)

or simply used the formalism of commuting operators, we would have only obtained a
four-dimensional subalgebra, namely

{X1e, X2e, Xzey Xae} - (3.41)

The meaning of thel(3, R) symmetry algebra in the discrete case is the same as in
the continuous one: the corresponding transformations will take straight lines into straight
lines. The situation here is so simple, because in this case the discrete equation has the
same solution set as its continuous limit.

3.3. Symmetries of the continuous—discrete heat equation
In the present approach, results corresponding to differential-difference equations can be

obtained by taking limits in which one, or more, of the spacings go to zero. Thus, e.g. for
continuous time we have

o — 0 T, —>1 A,—)%. (3.42)
Let us consider the heat equation in this limit:

u; — Ayu + g(x, Tyu =0. (3.43)
For the free equation we haye= 0 and the limit of (3.13) gives

Py =u,0, P1 = (Ayu)o, W =uo,

B=(2tAu+ xTx_lu + %UxTx_lu)E)u
D = [2tu, + xT,  Ayu + (1 — 3T YHuld,

K = {tPu, + txT7 A + [3x°T 72+t (L= 3171 — Lo?T 2 uld, .

The symmetry algebras in the discrete—discrete, discrete—continuous and continuous—
continuous cases are all mutually isomorphic, though they are all realized differently.
Similarly, we could take the limits for the potentials (3.23) and (3.29) that reduce to
g = k?x? andg = 1/x?, respectively.

(3.44)

3.4. Symmetries of a nonlinear ordinary difference equation

Let us consider the equation

At +u?=0. (3.45)
In the continuous limit we have

Uy +u? =0 (3.46)

and this equation is invariant under a two-dimensional symmetry group, generated by
translations and dilations

P =0, D = x0d, — 2ud, . (3.47)
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The corresponding evolutionary vector fields are
P, =u,d, D, = (xu, +2u)o, . (3.48)

In order to avoid using the complete formalism for nonlinear difference equations, let
us make a simplified ansatz, suggested by the continuous limit. Thus, we put

0 =&, T)(Awu)+ ¢(T). (3.49)
The determining equations are given by

ere(Axxu + M2)|A“u:—uz =0

o™ + ZquAnuzfuz =0. (350)
We have

(since& by assumption (3.49) does not dependgn For ¢ we make use of a Taylor
expansion to obtain

<01 9
ALY = Z{T“(Axu)z Do (Tf;k) @ =2UT = DTu]*?
a k=2 """

o0 k k
H(TAgett) 1 99 > (k> [(T? — 2T + 1)T%u]" 1
k=1

= Ha(Tauk) m=1 m
x[2T(T — 1)u]’<—m}. (3.52)
Substituting into (3.51) and requiring that the coefficient&f«)? must vanish we find
ak
T = k>2
(T u?)
ie.
¢p=A+B(T)u. (3.53)

The coefficient of(A,u) must also vanish. This implies
& =C(T)+xD(T). (3.54)

We expand all functions of the shift operatBrinto series, e.g.

o0

C(T) =) w(T - (3.55)
k=0

(inspired by the continuous limif — 1) and obtainA =0, D(T) =0

00
=0

C(T) = Z (_1)k(T — =T -1 tInT
ok +1

o (_1)k+1

B(T) = Z

k=1

(3.56)

(T-DF=InT.
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The corresponding evolutionary fields

v (1) k
Xe_[zk_}_l(T DFA, u]

~ i (3.57)
Y, = [Z (T — 1)ku:|3u
k=1 k
satisfy
5(\3 — P, f’; —- 0 (3.58)

in the continuous limit. R

Thus, translational invariance is represented by the opekatdsut dilational invariance
is not caught by the simplified ansatz (3.49). On the other hand, a new syminetry
occurring only in the discrete case, makes its appearance.

4. Conclusions

The main result presented in this paper is a constructive general formalism for calculating
symmetries of difference equations. It is applicable to arbitrary difference equations for a
set of functionsu,(x) (1 < a < ¢) of p independent variables;. The dependent and
independent variables are viewed as continuous, but the equations involve finite differences
A,u, rather than derivatives.

The proposed formalism is a nontrivial extension of the formalism of evolutionary vector
fields used for differential equations. For difference equations it turns out to be essential to
incorporate a certain class of generalized symmetries, in order to allow for discrete variations
of the independent variables. In the continuous limit these symmetries reduce to point ones
(since all operator§” satisfyT — 1 in the continuous limit- — 0).

The method of obtaining the determining equations is naachocone and is not just
based on an analogy with the continuous case. Indeed, it is easy to show that the condition

prX.E|lg—0 =0 (4.1)
is equivalent to the requirement that
eXey(x) = ii(x, A) 4.2)

is a solution, whenever(x) is one (in the discrete, just as in the continuous case). Moreover,
if (4.2) gives a solution fon. « 1, it does so also fok finite (just as in the continuous
case).

When deriving the determining equations, it is essential to distinguish between shift
operators?; and difference operatora,,. Obviously, they are related by (1.3), involving
the spacing;. In deriving determining equations from expression (4.1), we set equal to
zero the coefficients of different expressions(ita,, u), (A, Ay, u), etc. The functions;
and ¢ in the vector field (2.16) are assumed not to depend on the spagitmyit only on
x andu, where, howevery can be shifted arbitrarily7u). We note that expressions like
(T —1) tend to zero fow — 0, whereasA .u tends to the derivativeu /ox (thus(T — 1)u
cannot ‘simulate’ a variation).

Once a Lie algebra of vector fields is established and a basis is chosen, we can take linear
combinations of elements with coefficients that depend on the spagind$is was done in
the case of the discrete heat equation. Indeed, in (33} ud, is a symmetry operator.
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The terms proportional te, in B ando? in K involve precisely such a spacing-dependent
linear combination.

The examples treated in this paper have brought out several features.

First of all, the present approach gives a larger class of symmetries than those obtained
when requiring that the discrete variables vary only on a given fixed lattice [14-18]. As a
matter of fact, for linear equations we have always obtained a Lie algebra isomorphic to
that obtained in the continuous limit.

The second conclusion is that the formalism needs further improvements. While we can
handle symmetries of linear equations in complete generality, difficulties arise for nonlinear
ones. In order to obtain a manageable set of determining equations, we were forced to
imposea priori restrictions on the form of the vector fields. The symmetry algebra thus
obtained will, in general, be a subalgebra of the entire algebra (though still larger than that
obtained by other methods).

A paper addressing these problems is in preparation.
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