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Abstract. The methods of Lie group analysis of differential equations are generalized so as to
provide an infinitesimal formalism for calculating symmetries of difference equations. Several
examples are analysed, one of them being a nonlinear difference equation. For the linear
equations the symmetry algebra of the discrete equation is found to be isomorphic to that of its
continuous limit.

Résuḿe. Les ḿethodes de la th́eorie de groupes utilisées pour traiter leśequations diff́erentielles
sont ǵeńeraliśees au cas deśequations aux diff́erences finies. Plusieurs examples sont analysés,
parmi ceux-ci celui d’unéequation non lińeaire. Dans tous les cas linéaires il s’av̀ere que
l’algèbre de syḿetrie de l’́equation discr̀ete est isomorphèa celle de sa limite continue.

1. Introduction

The purpose of this paper is to develop an algebraic formalism for calculating symmetries
of difference equations. The equations to be studied will involve functionsu(x), where the
dependent variablesu ∈ Rp and independent onesx ∈ Rq are considered to be continuous.
The equations themselves will be discrete, i.e. written on a uniform lattice with spacings
σi > 0 (in the directionxi). Thus, instead of involving partial derivatives ofu(x), the
equations will contain finite differences (variations) of the form

1xi
u = 1

σi

{u(x1, . . . , xi−1, xi + σi, xi+1, . . . , xq) − u(x1, . . . , xi−1, xi, xi+1, . . . , xq)} (1.1)

and also shift operatorsTxi

Txi
u = u(x1, . . . , xi−1, xi + σi, xi+1, . . . , xq) . (1.2)

The spacings, variations and shift operators are related:

1xi
= 1

σi

(Txi
− 1) . (1.3)

The symmetries that we will introduce will constitute a ‘minimal’ extension of Lie
point symmetries of differential equations. For difference equations we will consider
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transformations that take solutions into solutions. They are not strictly point transformations,
in that the transformed functioñu(x) depends not only on the oldu and x, but also on
shifted valuesTxi

u(x). In the continuous limit withσi → 0, Txi
→ 1, 1xi

→ ∂xi
, the

transformations will reduce to point ones.
Our aim is to provide group-theoretical tools that are equally efficient for solving

difference equations, as their continuous limits are in the case of differential equations [1–5].
We recall here that once the symmetry group of a differential equation is found, it can be used
for many purposes. It will transform given solutions into new ones, often trivial solutions
into interesting ones. The symmetry group can be used to perform symmetry reduction, i.e.
reduce the order of an ordinary differential equation, or the number of independent variables
in a partial differential equation. Isomorphies between symmetry groups of differential
equations can be used to identify equivalent equations, in particular to determine whether a
nonlinear equation is linearizable by a point transformation [2]. Symmetry groups can also
serve as indicators of integrability [6–8] by Lax pair techniques.

The motivation for such a programme comes from the fact that difference equations are
becoming increasingly important in physical and other applications. They occur naturally
whenever discrete phenomena are studied. Obvious examples are spin lattices in statistical
mechanics, phenomena in crystals, molecular chains [9], etc. Difference equations and their
q-analogues play a crucial role in the representation theory of quantum groups and hence
in special function theory [10–13]. Difference equations also occur in studies of essentially
continuous phenomena, when differential equations are approximated by discrete ones, for
instance in numerical studies.

Several different approaches to symmetries of discrete equations exist in the literature.
In the first of them [14–18] one starts out from a given difference, or differential

difference equation for a functionu ∈ Rp, depending on a set of continuous variables
x ∈ Rq and discrete variablesn = (n1, . . . , nr). The equation involves derivatives in
the continuous independent variablesx and shifts in the discrete variablesn. Thus, in the
equation, we have entries likeu(x, n + k), uxi

(x, n + ki), etc, with (the discrete vectors)k
andki in some finite range. The method provides symmetry transformations, generated by
vector fields of the form

X =
∑

i

ξi(x, u)∂xi
+

∑
α

φα(n, x, u)∂uα
(1.4)

whereu = u(x, n). The method for finding the vector fieldsX, i.e. the coefficientsξi and
φα, involves the construction of the prolongation prN X of X (N is the order of the highest
derivative in the equation). The prolongation acts on functions ofx, u and the derivatives
of u, evaluated at all the pointsn + k where the functionsu(n, x) and their derivatives
are given [15, 16]. The determining equations for the coefficientsξi and φα are obtained
by requiring that the prolongation prN X should annihilate the equation on its solution set.
The algorithm thus coincides with the one used for differential equations [1–5], the only
difference being in the way in which the vector field is prolonged. Once the continuous
symmetries are found, the discrete ones are obtained separately, essentially by inspection
(e.g. discrete translations, or rotations, acting on the variablesn).

The described method is quite general, equally applicable to linear and nonlinear
equations. The disadvantage is that when passing from continuous to discrete equations
in this manner, some of the symmetries are lost. Indeed, since the discrete variablesn are
required to have integer values, it is difficult to envisage, for example, dilations of such
variables.
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A second method was introduced recently for finding symmetries of linear difference
equations [19, 20]. All variables in the problem are assumed to be continuous, with their
increments discrete, as in (1.1)–(1.3). The equations are written in the form

Lu(x) = 0 u ∈ Rp x ∈ Rq (1.5)

whereL is a polynomial in the finite differences1xi
with coefficients that can be functions

of x andTxi
. The symmetry operators in this approach have the form

X̂ =
q∑

i=1

ξi(x, Tx)1xi
+ f (x, Tx) (1.6)

i.e. they are themselves finite difference operators.
The symmetry operators are required to commute with the operatorL on the solution

set of (1.5)

[L, X̂] = λL (1.7)

whereλ can be a constant, a function ofx, or a lower-order difference operator. Equations
of the type (1.7) for difference operators are actually hard to solve. The approach actually
adopted in [19, 20] is to find operatorŝX such thatw = X̂u is a solution of (1.5), whenever
u is one. This requires knowing a complete set of solutions and implies that these operators
satisfy equations of the form (1.7). Upon investigating the commutation relations of the
symmetry generators, it was found, in all the examples studied, that they realize a Lie
algebra isomorphic to the one obtained in the continuous limit. These symmetries were
further used to obtain solutions involving discrete analogues of special functions.

In spirit, this method is a straightforward adaptation of symmetry methods used by
physicists to study symmetries and degeneracy problems in quantum mechanics. Below we
shall call it ‘the method of linear operators’. The big advantage of this method is that in
all the cases studied to date it provides symmetry algebras for discrete equations that are
isomorphic to those of their continuous limits.

Their concrete realizations are of course different. The disadvantage of the method is
that it is only applicable to linear equations. Moreover, as we shall see below, even for
linear equations the method of linear operators may not give all symmetries (either in the
continuous, or in the discrete case).

A third approach to symmetries of discrete equations is due to Dorodnitsyn and
collaborators [21, 22]. In this case the aim is to discretize a differential equation in
such a manner as to preserve all Lie point symmetries of the continuous equation. The
symmetry operators in this approach remain in their original (continuous) form. The lattice
is introduced in a very specific way, so as to be compatible with the original symmetries.
The group transformations then act not only on the independent and dependent variables, but
also on the lattice. For other results on symmetries of discrete equations, see e.g. [23, 24].

The purpose of this paper, already stated at the beginning of this introduction, can be
reformulated as follows. We wish to combine the advantages of the first two approaches
described above. That is, to develop a prolongation formalism for ‘discrete vector fields’,
applicable to linear and nonlinear equations, providing Lie symmetries in an algorithmic
manner. Moreover, in the continuous limit we should recover all Lie point symmetries of
the corresponding differential equations.

Section 2 of this paper is devoted to a general formalism for obtaining symmetries
of difference equations. We first recapitulate some results concerning the formalism of
evolutionary vector fields for differential equations. The general prolongation formalism
for difference equations is developed in section 2.2. Section 3 is devoted to examples. We
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treat the discrete heat equation with a general ‘potential’ and then specify the potential to
specific cases with interesting symmetry algebras. We also obtain the generators of both
linear and nonlinear symmetry transformations for the linear equation1xxu(x) = 0. A
nonlinear difference equation is analysed in section 3.4. Some conclusions are presented in
section 4.

2. Prolongation formalism for difference equations

2.1. Evolutionary vector fields for differential equations

Let us first consider a differential equation

E(x, uxi
, uxixk

, . . .) = 0 (2.1)

whereE is some sufficiently smooth scalar function of the independent variablesx ∈ Rq ,
the dependent variableu (for simplicity of notation a scalar) and its derivativesuxi,uxi xk

, . . . ,

up to orderN .
The Lie algebraL of the symmetry groupG of local point transformations can be

realized in terms of vector fields of the form

X =
q∑

i=1

ξi(x, u)∂xi
+ φ(x, u)∂u . (2.2)

The N th prolongation ofX must annihilate the equation on its solution set:

prN X E|E=0 = 0 . (2.3)

The prolongation is constructed in a standard manner [1–5], that has been implemented in
computer programs in many symbolic languages (see e.g. [25]).

Equation (2.3) provides a set of linear partial differential equations for the functions
ξi(x, u) and φ(x, u). Once they are solved, we have the symmetry algebraL, with X

either depending on a finite numberr of integration constants, or on one or more arbitrary
functions. In the first case we have dimL = r, in the second the algebra is infinite
dimensional.

Alternatively [1], we can use the formalism of evolutionary vector fields

Xe = Q∂u Q = ξi(x, u)uxi
− φ(x, u) (2.4)

where ξi and φ have the same meaning as in (2.2). The prolongation formulae in the
evolutionary formalism are quite simple, namely

prN Xe = Q∂u + Qxi ∂uxi
+ Qxixj ∂uxi xj

+ · · ·
Qxi = Dxi

Q Qxixj = Dxi
Dxj

Q, . . . ,
(2.5)

where Dxi
is the total derivative with respect toxi .

The evolutionary formalism is the one that we shall adapt to difference equations, so
let us present some further results for it.

The determining equations for the symmetry operatorXe, i.e. for the functionsξi and
φ are obtained by requiring that we have

prXeE|E=0 = 0 . (2.6)
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The commutation relations in the Lie algebra are obtained by commuting the first
prolongations of the corresponding vector fields and then projecting the results onto the
algebraL:

[X1e, X2e] = [pr(1) X1e, pr(1) X2e]|L
=

{
Q1

∂

∂u
Q2 − Q2

∂

∂u
Q1 + Q

xi

1

∂

∂uxi

Q2 − Q
xi

2

∂

∂uxi

Q1

}
∂u (2.7)

(the ∂uxi
terms are cut off by the projection onto the algebraL).

The symmetry transformations are obtained from the evolutionary fields by integrating
them, together with the original equation. Thus a one-parameter group of symmetry
transformations is obtained by solving the system

∂ũ(x, λ)

∂λ
= Q(x, ũ(x), ũxi

(x)) ũ(x, λ)|λ=0 = u(x) (2.8)

(possibly together with (2.1)). The result of the integration can be represented formally as

eλXeu(x) = ũ(x, λ) ≡ u(x) + λQ(x, ũ(x), ũxi
(x)) + O(λ2) . (2.9)

The formalism of commuting linear operators is related to the Lie prolongation
formalism in a simple manner. Indeed, let us restrict (2.1) to be linear and write it in
the form (1.5), whereL is a linear differential operator. The local group transformation
corresponding to the Lie algebra element (2.2) is given by

ũ(̃x) = (e−λXu)(x) x̃ = eλXx . (2.10)

Let us now further restrict the coefficientsξi andφ in (2.2) to have the form

ξi = ξi(x) φ = −f (x)u (2.11)

and expand̃u(̃x) and x̃ in (2.10) into power series, keeping only the terms propositional to
1 andλ. We find thatLu = 0 implies

X̂ = ξi(x)∂xi
+ f (x) . (2.12)

Conversely, if we require that the operator̂X of (2.12) should satisfy the commutation
relation (1.7), withL the corresponding linear differential operator andλ a function ofx, or
a differential operator, then̂Xu, X̂pu (p ∈ Z>) and eλX̂u are all solutions, ifu(x) is one.

Thus, for linear equations, instead of using the Lie formalism, we can simply look for
operatorŝX of the form (2.12), satisfying the commutation relation (1.7). The operator

Xe = (X̂u)∂u (2.13)

will then be a Lie symmetry operator in evolutionary form.
It should, however, be stressed that this linear formalism may only provide a subalgebra

of the Lie symmetry algebra, since the restriction (2.11), i.e.ξi independent ofu, φ

proportional tou, may result in a loss of some symmetries (see the second example in
section 3 below).

2.2. Evolutionary formalism for difference equations

Let us write a general difference equation, involving one scalar functionu(x) of p

independent variablesx = (x1, . . . xp) evaluated at a finite number of points on a lattice.
Symbolically we write it as

E(x, T αu(x), T βi 1xi
u(x), T γij 1xi

1xj
u(x), . . .) = 0 (2.14)
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whereE is some given function of its arguments and we have put, for example,

T αu(x) = T α1
x1

T α2
x2

. . . T
αp

xp
u(x) ai 6 αi 6 bi i = 1, . . . , p (2.15)

whereαi are integers running through some fixed finite range (i.e.ai andbi are some fixed
integers). The shift operatorsT βi , T γij , . . . are defined similarly and the corresponding
integersβi ∼ (βi1, . . . , βip), γij ∼ (γij1, . . . , γijp), . . . , also vary over some finite range.

The functionE may also depend explicitly on the spacingsσi , however,σi , Txi
and1xi

are not independent, since we have (1.3). Thus, to avoid redundances in the equations and
in the vector fields, we shall not allow expressions of the typeσa

i 1xi
with a ∈ Z>. They

can always be eliminated using (1.3). Negative powers ofσi are also disallowed. They can
either be absorbed in the variations1xi

u, or they can have a singular continuous limit.
Let us now consider a ‘discrete vector field’ in evolutionary form. We shall postulate

that it can be written as

Xe = Q∂u Q =
∑

i

ξi(x, T au)T b1xi
u − φ(x, T cu) (2.16)

where T a, T b and T c have the same meaning as in (2.14). Notice that in (2.16) the
variations1xi

u enter linearly, whereas the dependence onu (shifted, or not) is arbitrary.
In the continuous limit (2.16) reduces to (2.4).

The essential task is to present the consistent prolongation of the vector field (2.16).
The group transformations, generated byXe will take functionsu = u(x) into transformed
functionsũ = ũ(x). The group transformations generated by the prolongation prN Xe must
also transform the variations1xi

u, 1xi
1xj

u (up to orderN ) into the variations of̃u with
respect toxi , and to do this at all points of the lattice.

This also means that prN Xe will act on functions ofx, u and the variations at different
points of the lattice, i.e. functions of the form of the considered equation (2.14).

The prolongation formula satisfying the above requirements has the form

prN Xe =
{∑

α

T αQ∂T αu +
∑
βi

T βi Qxi ∂T βi 1xi
u +

∑
γij

T γij Qxixj ∂T
γij 1xi

1xj
u + . . .

}
. (2.17)

The shift operatorsT α, . . . , were defined in (2.15), the summations are over all values
(all sites) represented in (2.14). The coefficientsQxi , Qxixj , . . . are total variations of the
coefficientQ in the discrete evolutionary field (2.16). We have

Qxi = 1T
xi
Q Qxixj = 1T

xi
1T

xj
Q (2.18)

and similarly for higher-order prolongations.
The total variation1T

x acts on functions ofx, u, 1xu, . . . according to the following
definition:

1T
x f (x, u(x), 1xu(x), . . .) = 1

σ
[f (x + σ, u(x + σ), (1xu)(x + σ), . . .)

−f (x, u(x), (1xu)(x), . . .)] (2.19)

(for eachx = xi). The action of the ‘partial’ variation1x , on the other hand, is

1xf (x, u(x), 1xu(x), . . .)

= 1

σ
[f ((x + σ), u(x), 1xu(x), . . .) − f (x, u(x), 1xu(x), . . .)] (2.20)

for each independent variablexi .
The main difference between the prolongation formula (2.17), and the corresponding

one in the continuous case, i.e. equation (2.5), is precisely the summation over different
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sites on the lattice. In the continuous limitσi → 0 we haveT → 1 for all shift operators
and each summation contracts to a single term.

Once constructed, the discrete vector fields in their evolutionary form (2.16) and
their prolongation (2.17) can be treated in the same manner as in the continuous case.
Commutators are calculated as in (2.7), i.e. by commuting the first prolongations and
projecting ontoL. Symmetry transformations are obtained by solving equation (2.8).
This may, however, be difficult, since (2.8) is a first-order differential difference equation
involving differentiation inλ, but discrete derivatives (variations) in thep variablesxi .
In the continuous case it is a first-order linear PDE that can be solved by the method of
characteristics.

Luckily, in most applications one deals with the Lie algebra, rather than the Lie group.
The explicit group transformations are rarely needed.

The relation between the prolongation formalism, and the linear operator one, is the
same as in the continuous case. Indeed, consider the special case when equation (2.14) is
linear. The operator̂X of (1.6), satisfying (1.7), can be obtained by restrictingQ to satisfy

Q = [ξi(x)T βi

x (1xi
u) + f (x, Tx)u] = X̂u . (2.21)

The algorithm for calculating the symmetry algebra is given by equation (2.6), i.e. it
is the same as in the continuous case. The determining equations for the functionsξi and
φ are read off as coefficients of linearly independent expressions in the (possibly shifted)
discrete derivatives(T α1xi

u), (T β1xixi
u), . . . .

It should be pointed out, however, that technical difficulties occur, that make the general
formalism more difficult to use, than in the continuous case.

The main problem is inherent in the total variations1T
x f , defined in (2.19). Indeed,

total derivatives are expressed in a simple manner in terms of partial derivatives, e.g.

Dxf (x, u, ux, . . .) = ∂f

∂x
+ ∂f

∂u
ux + ∂f

∂ux

uxx + · · · .
As yet, no such formula is available for total variations. To deal with them we can either
make use of a Taylor expansion of the function on the right-hand side of (2.19), or introduce
a mechanism for expressing the total variations in terms of partial ones. The first possibility
introduces derivatives of all orders, the second one will introduce further difference equations
that are not easy to solve. An additional obvious problem is the presence ofa priori arbitrary
functions of the shift operatorsTxi

.
These technical difficulties really only arise for nonlinear equations.

3. Examples

Let us now apply the formalism of section 2 to some specific equations, three linear and
one nonlinear one.

3.1. Discrete heat equation

The equation that we consider is

[1t − 1xx + g(x, t, Tx, Tt )]u(x, t) = 0 (3.1)

whereg is some given function ofx, t and the two shift operatorsTx andTt .
In agreement with section 2, equation (2.16), we write the evolutionary vector field in

the form

Xe = [τ1tu + ξ1xu + f u]∂u ≡ Q∂u (3.2)
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whereτ , ξ andf are functions ofx, t, Tx andTt . They can also depend explicitly on thex

andt spacings,σx andσt (to some non-negative powers). We apply the second prolongation
pr2 Xe to (3.1) and require that the result should vanish on the solution set:

Qt − Qxx + gQ|1xxu=1tu+gu = 0 . (3.3)

The coefficientsQt = 1T
t Q and Qxx = 1T

xxQ depend explicitly onu and the variations
of u, up to third order. We use (3.1) and its difference consequences to eliminate1xxu,
1xxxu and 1xxtu. All 1ttu terms cancel and we are left, in equation (3.3), with the
expressions1xtu, 1tu, 1xu and u, all figuring linearly only. The coefficient of each of
these expressions must vanish and we obtain four determining equations forξ , τ , andf in
(3.2). They are:

1xτ = 0 (3.4)

−(1tτ )Tt + 2(1xξ)Tx + [τ, g] = 0 (3.5)

−(1tξ)Tt + (1xxξ)T 2
x + 2(1xf )Tx + [ξ, g] = 0 (3.6)

−(1tf )Tt + (1xxf )T 2
x + 2(1xξ)Txg + ξ(1xg)Tx + τ(1tg)Tt + [f, g] = 0 . (3.7)

We shall not analyse the symmetries of (3.1) for all possible functionsg, though in
principle that would be possible (though not easy even in the continuous case). Instead, we
consider some special cases.

3.1.1. The ‘free’ heat equation:g(x, t, Tx, Tt ) = 0. The determining equations (3.4)–(3.7)
are easily solved to yield

τ = t (2)τ2 + tτ1 + τ0 (3.8)

ξ = 1
2x(τ1 + 2tτ2)TtT

−1
x + tξ1 + ξ0 (3.9)

f = 1
4x(2)τ2T

2
t T −2

x + 1
2tτ2Tt + 1

2xξ1TtT
−1
x + γ (3.10)

whereτ0, τ1, τ2, ξ0, ξ1 and γ are arbitrary functions of the shift operatorsTx and Tt and
also of the spacingsσx andσt .

In equations (3.8) and (3.10) we have introduced factorial functions, or Pochhammer
symbolsx(n) (or t (n)) satisfying

1xx
(n) = nx(n−1) n ∈ Z>

x(n) = x(x − σx) . . . (x − (n − 1)σx)

x(0) = 1

1xx
(−n) = −nx(−n−1) n ∈ Z>

(3.11)

x(−n) = 1

x(x + σx) . . . (x + (n − 1)σx)
(3.12)

(and similarly fort (n)).
At first glance, each of the functionsτi , ξa and γ yields an infinite-dimensional

subalgebra of the symmetry algebra. We can, however, pick out a six-dimensional algebra,
isomorphic to the symmetry algebra of the continuous heat equation. Indeed, let us construct
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a basis, corresponding to six different choices of the coefficients in (3.8)–(3.10), respectively
(in each case all unspecified coefficients are chosen to vanish):

τ0 = 1: P0 = (1tu)∂u

ξ0 = 1: P1 = (1xu)∂u

γ = 1: W = u∂u

ξ1 = 2T −1
t γ = 1

2σxT
−1
x

B = (2tT −1
t 1xu + xT −1

x u + 1
2σxT

−1
x u)∂u

τ1 = 2T −1
t γ = 1 − 1

2T −1
x

D = [2tT −1
t 1tu + xT −1

x 1xu + (1 − 1
2T −1

x )u]∂u

τ2 = T −2
t ξ1 = σxT

−1
x T −1

t γ = − 1
16σ

2
x T −2

x

K = [t2T −2
t 1tu + txT −1

t T −1
x 1xu + 1

4x2T −2
x u + t (T −2

t − 1
2T −1

t T −1
x )u − 1

16σ
2
x T −2

x u]∂u .

(3.13)

The shift operators,Tx and Tt , themselves represent discrete symmetries of (3.1), i.e.
T n

x T m
t u is a solution, ifu is one. Hence the general element (3.2) of the symmetry algebra,

with τ , ξ and f as in (3.8)–(3.10) can be viewed as a linear combination of elements of
the algebra (3.13), with coefficients that are polynomials inTx andTt .

The symmetry algorithm thus provides not only the symmetry algebra itself, but also
elements that properly belong to an analogy of the enveloping algebra in the continuous
case.

3.1.2. Nonzero potentialg(x, t, Tx, Tt ) 6= 0. For the sake of simplicity, let us first of all
restrict the potential to the form

g = g(x, Tx) . (3.14)

We also make some restrictions on the dependence of the symmetry generators on the
shift operators. First of all, we imposeτ = τ(t, Tt ) (no Tx dependence). We then solve
(3.4)–(3.6) to obtain

τ = τ(t, Tt ) (3.15)

ξ = 1
2x(1tτ )TtT

−1
x + α(t, Tt ) (3.16)

f = 1
8x(2)(1tt τ )T 2

t T −2
x + 1

2x(1tα)TtT
−1
x − 1

41−1
x [x(1tτ )TtT

−1
x , g]T −1

x + β(t, Tt ) .

(3.17)

The fact thatα andβ in (3.15)–(3.17) do not depend onTx is again a restriction on the
symmetries considered.

The remaining determining equation (3.7) relates the functionsg(x, Tx), τ(t, Tt ), α(t, Tt )

andβ(t, Tt ). It simplifies greatly if the commutator [f, g] vanishes.
Two cases of interest when this happens are

g = cx(p)T −p
x p ∈ Z> (3.18)

g = cTxx
(−p)T p−1

x p ∈ Z> . (3.19)

For both these potentials we have

[xT −1
x , g] = 0 [x(2)T −2

x , g] = 0 . (3.20)

Hencef of equation (3.17) simplifies to

f = 1
8x(2)(1tt τ )T 2

t T −2
x + 1

2x(1tα)TtT
−1
x + β(t, Tt ) . (3.21)
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Moreover, equation (3.7) can now be rewritten as

− 1
8x(2)(1ttt τ )T 3

t T −2
x − 1

2x(1ttα)T 2
t T −1

x − (1tβ)Tt + 1
4(1tt τ )T 2

t + (1tτ )Ttg

+ 1
2x(1tτ )TtT

−1
x (1xg)Tx + α(1xg)Tx = 0 . (3.22)

Equation (3.22) holds for any potentialg satisfying [f, g] = 0, in particular, for the potentials
(3.18) and (3.19).

We shall now restrictg(x, Tx) even further, namely to two cases that have interesting
symmetry algebras in the continuous case when we haveσx → 0, σt → 0, Tx → 1, Tt → 1.
The continuous heat equation has a six-dimensional symmetry algebra, isomorphic to that
of the free equation forg = cx2. It has a four-dimensional symmetry algebra that is a
subalgebra of that of the free equation, forg = ax−2 (see [26, 27] for similar results for
the Schr̈odinger equation).

Let us consider the discrete analogues of these two cases.

3.1.3. (i) Discrete harmonic oscillator.

g(x, Tx) = k2x(2)T −2
x k ∈ R> . (3.23)

In this case equation (3.22) has terms proportional tox(2), x andx0. Their coefficients must
vanish separately, sinceτ , α andβ do not depend onx. The corresponding equations are

(1ttt τ ) = 16k2(1tτ )T −2
t

1ttα = 4k2αT −2
t

1tβ = 1
4(1tt τ )Tt .

(3.24)

To solve these equations, we introduce a ‘shifted discrete exponential’Em(t) satisfying

1tEm(t) = mEm(t)T −1
t . (3.25)

The solution of (3.25) can be written as

Em(t) = (1 + mT −1
t σt )

t/σt . (3.26)

In terms of this function we have the general solution of (3.24) as

τ = E4k(t)τ1 + E−4k(t)τ2 + τ0

α = E2k(t)α1 + E−2k(t)α2

β = k(E4k(t)τ1 − E−4k(t)τ2) + γ

(3.27)

whereτ1, τ2, τ0, α1, α2 andγ are functions ofTt (and the spacingsσx , σt ).
The corresponding evolutionary vector fields are

P0 = τ01tu∂u L = γ u∂u

T1 = E4k(t)τ1[1tu + 2kxT −1
x 1xu + 2k2x(2)T −2

x u + ku]∂u

T2 = E−4k(t)τ2[1tu − 2kxT −1
x 1xu + 2k2x(2)T −2

x u − ku]∂u

A1 = E2k(t)α1(1xu + kxT −1
x u)∂u

A2 = E−2k(t)α2(1xu − kxT −1
x u)∂u .

(3.28)

As in the case ofg = 0 it is possible to fix the functionsτi , αi andγ and choose a basis,
so as to obtain a six-dimensional Lie algebra isomorphic to that of the free heat equation
(the discrete and the continuous one). We shall not go into that here.
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3.1.4. (ii) Discrete ‘centrifugal barrier’.

g(x, Tx) = Txx
(−2)Tx . (3.29)

Equation (3.22) now contains terms of the formx(2), x, x0 and x(−2). We obtain four
determining equations. Solving them we findτ , ξ and f in the general element of the
symmetry algebra to be

τ = τ0 + tτ1 + t (2)τ2

ξ = 1
2x(τ1 + 2tτ2)TtT

−1
x

f = 1
4x(2)τ2T

2
t T −2

x + 1
2tτ2Tt + γ

(3.30)

whereτi andγ are functions ofTt , σt andσx .
By fixing τi and γ appropriately, we can select a four-dimensional symmetry algebra

from the vector fields with coefficients (3.30).
We mention that a different approach could have been adopted in this case. Indeed

we could have required that a four-dimensional subalgebra of the ‘free’ symmetry algebra
(3.13) should survive, as it does in the continuous case forg = x−2. This would be the
algebra{P0, D, K, W }. This algebra could then be inserted into equation (3.22) and that
equation solved for the potentialg(x, Tx). The result forg(x, Tx) would then be (3.29).

3.2. The second-order difference equation1xxu = 0

The ordinary differential equationuxx = 0 is invariant under the Lie groupSL(3, R),
acting as the group of projective transformations of the(x, u)-plane. The six-dimensional
subgroup of affine transformations acts linearly and globally. The remaining two one-
parameter subgroups act locally and nonlinearly in bothx andu. The symmetry group in
itself is of no particular use (since we know the general solutionu = ax + b anyway).
However, Lie point symmetries survive under point transformations. Hence, any ordinary
differential equation, linearizable by a point transformation, will have ansl(3, R) symmetry
algebra. This is a very useful criterion of linearizability.

We expect the same to be true for the difference equation

1xxu = 0 . (3.31)

The linear formalism and the corresponding ansatz (2.21) are clearly insufficient in this
case. We start from the more general ansatz of (2.16), namely that the discrete evolutionary
vector field has the form

Xe = [ξ(x, T a
x u)T b

x 1xu + φ(x, T c
x u)]∂u = Q∂u . (3.32)

The determining equations are obtained by requiring that we have

1T
xxQ|1xxu=0 = 0 . (3.33)

We expandξ andφ in Laurent series inu and rewrite equation (3.33) as

+∞∑
j=−∞

{1xxξj (x, Tx)T
2
x [uj1xu] + 21xξj (x, Tx)Tx [(1xu

j )Tx1xu]

+ξj (x, Tx)[(1xxu
j )T 2

x 1xu] + 1xxφj (x, Tx)T
2
x uj

+21xφj (x, Tx)Tx(1xu
j ) + φj (x, Tx)(1xxu

j )}|1xxu=0 = 0 (3.34)
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whereξj , φj are functions ofx and operators inTx . For 1xxu = 0 we have

1xu
j = 1xu

j∑
k=1

uk−1(T uj−k) j > 1

1xu
j = 0 j = 0

1xu
j = −1xu

−j∑
k=1

uk−j−1(T u−k) j < 0

(3.35)

and

1xxu
j = (1xu)2

j∑
k=1

{k−1∑
l=1

ul−1(T uk−l−1(T 2uj−k) + uk−1
j−k∑
l=1

(T ul−1)(T 2uj−k−l)

}
j > 1

1xxu
j = 0 j = 0, 1

1xxu
j = (1xu)2

−j∑
k=1

{−j+1−k∑
k=1

ul+j+k−2(T u−l)+uk+j−1
k∑

l=1

(T ul−k−1)(T 2u−l)

}
j < 0 .

(3.36)

To derive (3.34)–(3.36) we have taken into account that for1xxu = 0, we haveT n
x 1xu =

1xu for anyn. Using equations (3.35) and (3.36), we can rewrite (3.34) as a Laurent series
in u(x) and1xu, with coefficients depending on the operatorsξj andφj , and their first and
secondx-variations. By equating to zero all coefficients of different powers ofu and1xu

we get the following determining equations:

ξj (x, Tx) = 0 ∀j < 0 and j > 2

φj (x, Tx) = 0 j < 0 and j > 3

1xxφj = 0 j = 0, 1, 2

1xxξ0 + 21xφ1 = 0

1xxξ1T
2
x + 21xφ2Tx(Tx + 1) = 0

1xξ1 + 2φ2 = 0 .

(3.37)

Solving equation (3.37), we find that the symmetry algebra is characterized by four constants
and four functions ofTx andσx and is given by eight vector fields which in the evolutionary
formalism are given by

X1e = 1xu∂u

X2e = x1xu∂u

X3e = φ10(Tx, σx)u∂u

X4e = [xφ11(σx, Tx)u − x(2)φ11(σx, Tx)1xu]∂u

X5e = ∂u

X6e = x∂u

X7e = ξ10(Tx, σx)u1xu∂u

X8e = {φ20(σx, Tx)u
2 − xφ20(σx, Tx)u1xu}∂u .

(3.38)

In order to obtain thesl(3, R) algebra, we choose the remaining functions ofσx andTx

to be

φ10 = 1 φ11 = T −1
x ξ10 = 1 φ20 = 1 . (3.39)
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Thus, as in the case of the discrete heat equation, we obtain a symmetry algebra, isomorphic
to the one that exists in the continuous limit.

Had we made the ‘linear’ ansatz

Xe = (ξ(x)1xu + f (x)u)∂u = Q∂u (3.40)

or simply used the formalism of commuting operators, we would have only obtained a
four-dimensional subalgebra, namely

{X1e, X2e, X3e, X4e} . (3.41)

The meaning of thesl(3, R) symmetry algebra in the discrete case is the same as in
the continuous one: the corresponding transformations will take straight lines into straight
lines. The situation here is so simple, because in this case the discrete equation has the
same solution set as its continuous limit.

3.3. Symmetries of the continuous–discrete heat equation

In the present approach, results corresponding to differential-difference equations can be
obtained by taking limits in which one, or more, of the spacings go to zero. Thus, e.g. for
continuous time we have

σt → 0 Tt → 1 1t → ∂

∂t
. (3.42)

Let us consider the heat equation in this limit:

ut − 1xxu + g(x, Tx)u = 0 . (3.43)

For the free equation we haveg = 0 and the limit of (3.13) gives

P0 = ut∂u P1 = (1xu)∂u W = u∂u

B = (2t1xu + xT −1
x u + 1

2σxT
−1
x u)∂u

D = [2tut + xT −1
x 1xu + (1 − 1

2T −1
x )u]∂u

K = {t2ut + txT −1
x 1xu + [ 1

4x2T −2
x + t (1 − 1

2T −1
x ) − 1

16σ
2
x T −2

x ]u}∂u .

(3.44)

The symmetry algebras in the discrete–discrete, discrete–continuous and continuous–
continuous cases are all mutually isomorphic, though they are all realized differently.

Similarly, we could take the limits for the potentials (3.23) and (3.29) that reduce to
g = k2x2 andg = 1/x2, respectively.

3.4. Symmetries of a nonlinear ordinary difference equation

Let us consider the equation

1xxu + u2 = 0 . (3.45)

In the continuous limit we have

uxx + u2 = 0 (3.46)

and this equation is invariant under a two-dimensional symmetry group, generated by
translations and dilations

P = ∂x D = x∂x − 2u∂u . (3.47)
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The corresponding evolutionary vector fields are

Pe = ux∂u De = (xux + 2u)∂u . (3.48)

In order to avoid using the complete formalism for nonlinear difference equations, let
us make a simplified ansatz, suggested by the continuous limit. Thus, we put

Q = ξ(x, T )(1xu) + φ(T au) . (3.49)

The determining equations are given by

prXe(1xxu + u2)|1xxu=−u2 = 0

i.e.

Qxx + 2uQ|1xxu=−u2 = 0 . (3.50)

We have

1T
xxξ = 1xxξ (3.51)

(since ξ by assumption (3.49) does not depend onu). For φ we make use of a Taylor
expansion to obtain

1T
xxφ =

∑
a

{
T a(1xu)2

∞∑
k=2

1

k!

∂kφ

∂(T auk)
(2k − 2)[(T − 1)T au]k−2

+(T a1xxu)

∞∑
k=1

1

k!

∂kφ

∂(T auk)

k∑
m=1

(
k

m

)
[(T 2 − 2T + 1)T au]m−1

×[2T a(T − 1)u]k−m

}
. (3.52)

Substituting into (3.51) and requiring that the coefficient of(1xu)2 must vanish we find

∂kφ

∂(T au2)
= 0 k > 2

i.e.

φ = A + B(T )u . (3.53)

The coefficient of(1xu) must also vanish. This implies

ξ = C(T ) + xD(T ) . (3.54)

We expand all functions of the shift operatorT into series, e.g.

C(T ) =
∞∑

k=0

γk(T − 1)k (3.55)

(inspired by the continuous limitT → 1) and obtainA = 0, D(T ) = 0

C(T ) =
∞∑

k=0

(−1)k

k + 1
(T − 1)k = (T − 1)−1 ln T

B(T ) =
∞∑

k=1

(−1)k+1

k
(T − 1)k = ln T .

(3.56)
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The corresponding evolutionary fields

X̂e =
[ ∞∑

k=0

(−1)k

k + 1
(T − 1)k1xu

]
∂u

Ŷe =
[ ∞∑

k=1

(−1)k+1

k
(T − 1)ku

]
∂u

(3.57)

satisfy

X̂e → Pe Ŷe → 0 (3.58)

in the continuous limit.
Thus, translational invariance is represented by the operatorX̂e, but dilational invariance

is not caught by the simplified ansatz (3.49). On the other hand, a new symmetryŶe,
occurring only in the discrete case, makes its appearance.

4. Conclusions

The main result presented in this paper is a constructive general formalism for calculating
symmetries of difference equations. It is applicable to arbitrary difference equations for a
set of functionsuα(x) (1 6 α 6 q) of p independent variablesxi . The dependent and
independent variables are viewed as continuous, but the equations involve finite differences
1xu, rather than derivatives.

The proposed formalism is a nontrivial extension of the formalism of evolutionary vector
fields used for differential equations. For difference equations it turns out to be essential to
incorporate a certain class of generalized symmetries, in order to allow for discrete variations
of the independent variables. In the continuous limit these symmetries reduce to point ones
(since all operatorsT satisfyT → 1 in the continuous limitσ → 0).

The method of obtaining the determining equations is not anad hocone and is not just
based on an analogy with the continuous case. Indeed, it is easy to show that the condition

prXeE|E=0 = 0 (4.1)

is equivalent to the requirement that

eλXeu(x) = ũ(x, λ) (4.2)

is a solution, wheneveru(x) is one (in the discrete, just as in the continuous case). Moreover,
if (4.2) gives a solution forλ � 1, it does so also forλ finite (just as in the continuous
case).

When deriving the determining equations, it is essential to distinguish between shift
operatorsTi and difference operators1xi

. Obviously, they are related by (1.3), involving
the spacingσi . In deriving determining equations from expression (4.1), we set equal to
zero the coefficients of different expressions in(1xi

u), (1xi
1xk

u), etc. The functionsξi

andφ in the vector field (2.16) are assumed not to depend on the spacingσi , but only on
x andu, where, however,u can be shifted arbitrarily(T αi

xi
u). We note that expressions like

(T − 1) tend to zero forσ → 0, whereas1xu tends to the derivative∂u/∂x (thus(T − 1)u

cannot ‘simulate’ a variation).
Once a Lie algebra of vector fields is established and a basis is chosen, we can take linear

combinations of elements with coefficients that depend on the spacingsσi . This was done in
the case of the discrete heat equation. Indeed, in (3.13),W = u∂u is a symmetry operator.
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The terms proportional toσx in B andσ 2
x in K involve precisely such a spacing-dependent

linear combination.
The examples treated in this paper have brought out several features.
First of all, the present approach gives a larger class of symmetries than those obtained

when requiring that the discrete variables vary only on a given fixed lattice [14–18]. As a
matter of fact, for linear equations we have always obtained a Lie algebra isomorphic to
that obtained in the continuous limit.

The second conclusion is that the formalism needs further improvements. While we can
handle symmetries of linear equations in complete generality, difficulties arise for nonlinear
ones. In order to obtain a manageable set of determining equations, we were forced to
imposea priori restrictions on the form of the vector fields. The symmetry algebra thus
obtained will, in general, be a subalgebra of the entire algebra (though still larger than that
obtained by other methods).

A paper addressing these problems is in preparation.
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